
Welcome!

Thank you for purchasing our AZ-Delivery BME280 temperature, humidity

and air pressure sensor. On the following pages, you will be introduced to

how to use and set-up this handy device.

Have fun!

Table of Contents

Introduction..3

Specifications..4

How to set-up Arduino IDE..5

How to set-up the Raspberry Pi and Python...9

The pinout...10

Connecting the module with microcontroller..11

Arduino IDE library..12

Sketch example...13

Connecting the sensor with Raspberry Pi...17

Enabling the I2C interface...18

Python scripts..20

- 2 -

Introduction

The BME280 sensor is a digital barometric sensor in one small package.

The sesnors consists of temperature, humidity and pressure sensors

combined. The BME280 sensor can be used in a variety of applications

such as home automation for heating and air conditioning, health monitoring

devices, navigation systems, weather stations, handset devices, IoT and

many other applications. Compact design and low power consumption are

beneficial for portability and battery powered devices. High accuracy and

fast response time make it a perfect candidate for extending the

functionality of many other devices of choice.

The BME280 supports the I2C serial interface. The sensor has the

predefined I2C address, which is 0x76. The I2C address can be changed to

value 0x77, which is not covered in this eBook.

Current consumption is under 1mA, when in measurement mode, and 5μA

when it is in idle mode.

- 3 -

Specifications

» Operating voltage range: from 3.3V to 5V DC

» Current consumption: < 1mA

» Temperature range: from -40°C to 85 °C

» Temperature accuracy: ±1.0°C

» Pressure range: from 300 to 1100 hPa

» Pressure accuracy: ±1hPa

» Humidity range: from 0 to 100% RH

» Humidity accuracy: ±3%

» Dimensions: 9 x 11 x 2mm [0.35 x 0.43 x 0.078inch]

- 4 -

The pinout

The BME280 sensor has four pins. The pinout is shown on the following

image:

The sensor has an on-board LM6206 3.3V voltage regulator and a voltage

level translator. The pins of the BME280 sensor can operate on voltages in

range from 3.3V or 5V without a danger for the sensor itself.

- 5 -

How to set-up Arduino IDE

If the Arduino IDE is not installed, follow the link and download the

installation file for the operating system of choice.

For Windows users, double click on the downloaded .exe file and follow

the instructions in the installation window.

- 6 -

https://www.arduino.cc/en/Main/Software

For Linux users, download a file with the extension .tar.xz, which has to

be extracted. When it is extracted, go to the extracted directory and open

the terminal in that directory. Two .sh scripts have to be executed, the first

called arduino-linux-setup.sh and the second called install.sh.

To run the first script in the terminal, open the terminal in the extracted

directory and run the following command:

sh arduino-linux-setup.sh user_name

user_name - is the name of a superuser in the Linux operating system. A

password for the superuser has to be entered when the command is

started. Wait for a few minutes for the script to complete everything.

The second script called install.sh script has to be used after

installation of the first script. Run the following command in the terminal

(extracted directory): sh install.sh

After the installation of these scripts, go to the All Apps, where the

Arduino IDE is installed.

- 7 -

Almost all operating systems come with a text editor preinstalled (for

example, Windows comes with Notepad, Linux Ubuntu comes with

Gedit, Linux Raspbian comes with Leafpad, etc.). All of these text

editors are perfectly fine for the purpose of the eBook.

Next thing is to check if your PC can detect an Arduino board. Open freshly

installed Arduino IDE, and go to:

Tools > Board > {your board name here}

{your board name here} should be the Arduino/Genuino Uno, as it

can be seen on the following image:

The port to which the Arduino board is connected has to be selected. Go to:

Tools > Port > {port name goes here}

and when the Arduino board is connected to the USB port, the port name

can be seen in the drop-down menu on the previous image.

- 8 -

If the Arduino IDE is used on Windows, port names are as follows:

For Linux users, for example port name is /dev/ttyUSBx, where x

represents integer number between 0 and 9.

- 9 -

How to set-up the Raspberry Pi and Python

For the Raspberry Pi, first the operating system has to be installed, then

everything has to be set-up so that it can be used in the Headless mode.

The Headless mode enables remote connection to the Raspberry Pi,

without the need for a PC screen Monitor, mouse or keyboard. The only

things that are used in this mode are the Raspberry Pi itself, power supply

and internet connection. All of this is explained minutely in the free eBook:

Raspberry Pi Quick Startup Guide

The Raspbian operating system comes with Python preinstalled.

- 10 -

https://www.az-delivery.de/products/raspberry-pi-kostenfreies-e-book?ls=en

Connecting the module with microcontroller

Connect the BME280 sensor with the microcontroller as shown on the

following connection diagram:

BME280 pin MC pin Wiring color

VIN 3.3V Red wire

GND GND Black wire

SCL A5 Orange wire

SDA A4 Blue wire

- 11 -

Library for Arduino IDE

To use the sensor with microcontroller it is recommended to download an

external library for it. The library that is used in this eBook is called

Adafruit BME280. To download and install it, open Arduino IDE and go

to:

Tools > Manage Libraries

When a new window opens, type BME280 in the search box and install the

library called Adafruit BME280 Library made by Adafruit as shown

on the following image:

When the Install button is clecked, the prompt to install some additional

libraries is shown, like on the following image:

Click Install all to finish the installation of the Adafruit BME280

library.

- 12 -

Sketch example

The following sketch example is modified sketch from the Adafruit

BME280 library:

File > Examples > Adafruit BME280 Library > bme280test

#include <Wire.h>

#include <Adafruit_Sensor.h>

#include <Adafruit_BME280.h>

Adafruit_BME280 bme; // I2C

void setup() {

 Serial.begin(9600);

 // default address from library is 0x77

 // bool communication = bme.begin();

 bool communication = bme.begin(0x76);

 if (!communication) {

 Serial.println("Could not find a valid BME280 sensor");

 Serial.println("check wiring, address, sensor ID!");

 Serial.print("SensorID was: 0x");

 Serial.println(bme.sensorID(), 16);

 Serial.println("ID of 0xFF probably means a bad address\n");

 while (true) { };

 delay(10);

 }

 else {

 Serial.println("Communication established!\n");

 }

}

- 13 -

void loop() {

 Serial.print("Temperature = ");

 Serial.print(bme.readTemperature());

 Serial.println(" *C");

 Serial.print("Pressure = ");

 Serial.print(bme.readPressure() / 100.0F);

 Serial.println(" hPa");

 Serial.print("Humidity = ");

 Serial.print(bme.readHumidity());

 Serial.println(" %\n");

 delay(1000);

}

- 14 -

Upload the sketch to the microcontroller and open Serial Monitor (Tools >

Serial Monitor). The result should look like the output on the following

image:

- 15 -

The sketch begins with including three libraries: Wire, Adafruit_Sensor

and Adafruit_BME280.

Next, the object called bme is created with the following line of code:

Adafruit_BME280 bme;

In the setup() function the serial communication is started with the baud

rate of 9600bps.

Then, the bme object is initialized with the following line of the code:

bme.begin(0x76)

where 0x76 is the I2C address of the sensor.

The begin() function returns a boolean value, which show if the

initialization is successful or not. This value is stored in the variable called

communication, with the following line of the code:

bool communication = bme.begin(0x76);

At the end of the setup() function, the success of the initialization is

checked. If it is successful, the message Communication established

is displayed in the Serial Monitor. If the initialization was not successful the

error data is displayed in the Serial Monitor.

- 16 -

In the loop() function the temperature, pressure and humidity data is

read with the following lines of code:

bme.readTemperature()

bme.readPressure() / 100.0F

bme.readHumidity()

After that the data is displayed in Serial Monitor with following lines of code:

Serial.print(bme.readTemperature());

Serial.print(bme.readPressure() / 100.0F);

Serial.print(bme.readHumidity());

There is a one second pause between two measurements at the end of the

loop() function: delay(1000);

- 17 -

Connecting the sensor with Raspberry Pi

Connect the BME280 sensor with the Raspberry Pi as shown on the

following connection diagram:

BME280 pin Raspberry Pi pin Physical pin No. Wire color

GND GND 9 Black wire

VIN 3V3 1 Red wire

SCL GPIO3 5 Blue wire

SDA GPIO2 3 Green wire

- 18 -

Enabling the I2C interface

In order to use the module with Raspberry Pi, the I2C interface has to be

enabled. Open following menu:

Application Menu > Preferences > Raspberry Pi Configuration

In the new window, under the tab Interfaces, enable the I2C radio button, as

shown on the following image:

- 19 -

To detect the I2C address of the sensor connected to the I2C interface of

the Raspberry Pi, the i2c-tools tool has to be installed, if not, open the

terminal and run the following command:

sudo apt-get install i2c-tools

To detect the I2C address, open terminal and run the following command:

i2cdetect -y 1

The result should look like the output on the following image:

Where 0x76 is the I2C address of the sensor.

If the I2C interface of the Raspberry Pi is not enabled, and the previous

command is executed, the following error will be raised:

- 20 -

Python scripts

Two scripts are created, one for all functions and the other for using these

functions, because of a better readability. The code for the first script is the

following:

import smbus

import time

from ctypes import c_short

from ctypes import c_byte

from ctypes import c_ubyte

DEVICE = 0x76 # Default device I2C address

bus = smbus.SMBus(1) # Rev 2 Pi, Pi 2 & Pi 3 uses bus 1

 # Rev 1 Pi uses bus 0

def getShort(data, index):

 # return two bytes from data as a signed 16-bit value

 return c_short((data[index+1] << 8) + data[index]).value

def getUShort(data, index):

 # return two bytes from data as an unsigned 16-bit value

 return (data[index + 1] << 8) + data[index]

def getChar(data, index):

 # return one byte from data as a signed char

 result = data[index]

 if result > 127:

 result -= 256

 return result

- 21 -

def getUChar(data, index):

 # return one byte from data as an unsigned char

 result = data[index] & 0xFF

 return result

def readBME280ID(addr=DEVICE):

 # Chip ID Register Address

 REG_ID = 0xD0

 (chip_id, chip_version) = bus.read_i2c_block_data(addr, REG_ID, 2)

 return (chip_id, chip_version)

def readBME280All(addr=DEVICE):

 # Register Addresses

 REG_DATA = 0xF7

 REG_CONTROL = 0xF4

 REG_CONFIG = 0xF5

 REG_CONTROL_HUM = 0xF2

 REG_HUM_MSB = 0xFD

 REG_HUM_LSB = 0xFE

 # Oversample setting

 OVERSAMPLE_TEMP = 2

 OVERSAMPLE_PRES = 2

 MODE = 1

 # Oversample setting for humidity register

 OVERSAMPLE_HUM = 2

 bus.write_byte_data(addr, REG_CONTROL_HUM, OVERSAMPLE_HUM)

 control = OVERSAMPLE_TEMP << 5 | OVERSAMPLE_PRES << 2 | MODE

 bus.write_byte_data(addr, REG_CONTROL, control)

 # Read blocks of calibration data from EEPROM

 cal1 = bus.read_i2c_block_data(addr, 0x88, 24)

 cal2 = bus.read_i2c_block_data(addr, 0xA1, 1)

 cal3 = bus.read_i2c_block_data(addr, 0xE1, 7)

- 22 -

 # one tab

 # Convert byte data to word values

 dig_T1 = getUShort(cal1, 0)

 dig_T2 = getShort(cal1, 2)

 dig_T3 = getShort(cal1, 4)

 dig_P1 = getUShort(cal1, 6)

 dig_P2 = getShort(cal1, 8)

 dig_P3 = getShort(cal1, 10)

 dig_P4 = getShort(cal1, 12)

 dig_P5 = getShort(cal1, 14)

 dig_P6 = getShort(cal1, 16)

 dig_P7 = getShort(cal1, 18)

 dig_P8 = getShort(cal1, 20)

 dig_P9 = getShort(cal1, 22)

 dig_H1 = getUChar(cal2, 0)

 dig_H2 = getShort(cal3, 0)

 dig_H3 = getUChar(cal3, 2)

 dig_H4 = getChar(cal3, 3)

 dig_H4 = (dig_H4 << 24) >> 20

 dig_H4 = dig_H4 | (getChar(cal3, 4) & 0x0F)

 dig_H5 = getChar(cal3, 5)

 dig_H5 = (dig_H5 << 24) >> 20

 dig_H5 = dig_H5 | (getUChar(cal3, 4) >> 4 & 0x0F)

 dig_H6 = getChar(cal3, 6)

 # Wait in ms (Datasheet Appendix B: Measurement

 # time and current calculation)

 wait_time = 1.25 + (2.3 * OVERSAMPLE_TEMP) + ((2.3 *

OVERSAMPLE_PRES) + 0.575) + ((2.3 * OVERSAMPLE_HUM) + 0.575)

 time.sleep(wait_time / 1000) # Wait the required time

 # Read temperature / pressure / humidity

 data = bus.read_i2c_block_data(addr, REG_DATA, 8)

 pres_raw = (data[0] << 12) | (data[1] << 4) | (data[2] >> 4)

- 23 -

 # one tab

 temp_raw = (data[3] << 12) | (data[4] << 4) | (data[5] >> 4)

 hum_raw = (data[6] << 8) | data[7]

 # Refine temperature

 var1 = ((((temp_raw >> 3) – (dig_T1 << 1))) * (dig_T2)) >> 11

 var2 = (((((temp_raw >> 4) – (dig_T1)) * ((temp_raw >> 4) -

(dig_T1))) >> 12)*(dig_T3)) >> 14

 t_fine = var1 + var2

 temperature = float(((t_fine * 5) + 128) >> 8);

 # Refine pressure and adjust for temperature

 var1 = t_fine / 2.0 - 64000.0

 var2 = var1 * var1 * dig_P6 / 32768.0

 var2 = var2 + var1 * dig_P5 * 2.0

 var2 = var2 / 4.0 + dig_P4 * 65536.0

 var1 = (dig_P3 * var1 * var1 / 524288.0 + dig_P2 * var1) / 524288.0

 var1 = (1.0 + var1 / 32768.0) * dig_P1

 if var1 == 0:

 pressure = 0

 else:

 pressure = 1048576.0 - pres_raw

 pressure = ((pressure - var2 / 4096.0) * 6250.0) / var1

 var1 = dig_P9 * pressure * pressure / 2147483648.0

 var2 = pressure * dig_P8 / 32768.0

 pressure = pressure + (var1 + var2 + dig_P7) / 16.0

 # Refine humidity

 humidity = t_fine - 76800.0

 humidity = (hum_raw - (dig_H4 * 64.0 + dig_H5 / 16384.0 * humidity))

* (dig_H2 / 65536.0 * (1.0 + dig_H6 / 67108864.0 * humidity * (1.0 +

dig_H3 / 67108864.0 * humidity)))

 humidity = humidity * (1.0 - dig_H1 * humidity / 524288.0)

- 24 -

 # one tab

 if humidity > 100:

 humidity = 100

 elif humidity < 0:

 humidity = 0

 return temperature / 100.0, pressure / 100.0, humidity

Save the script by the name bme280.py. The script code is modified from

the script.

- 25 -

https://bitbucket.org/MattHawkinsUK/rpispy-misc/raw/master/python/bme280.py

The following is code for the main script:

import bme280

from time import sleep

dgr = u'\xb0'

print('[Press CTRL + C to end the script!]')

try:

while(True):

temperature,pressure,humidity = bme280.readBME280All()

print('Temperature = {}{}C'.format(temperature, dgr))

print('Humidity = {.2f}%'.format(humidity))

print('Pressure = {.2f}hPa\n'.format(pressure))

sleep(1)

except KeyboardInterrupt:

print('Script end!')

- 26 -

Save the script by the name bme280main.py into the same directory

where you saved the bme280.py script. To run the main script open the

terminal in the directory where the scripts are saved and run the following

command:

python3 bme280main.py

The result should look like the output on the following image:

To stop the script press CTRL + C on the keyboard.

The first script is not explained in this eBook.

- 27 -

The bme280main.py script starts with importing bme280 script and the

sleep function from the time library.

Then, the dgr variable is created, where UTF degree sign value is stored.

Next, the try-except block of code is created. In the try block of code,

the indefinite loop block (while True:) is created. Inside this block of code

the readBME280All() function is used to read the sensor data. This

function returns tuple of three elements: temperature, pressure and

humidity elements. Then, the data is displayed in the terminal. In the

output, to round the floating point number to two decimal places after the

decimal point, the following line of code is used:

print('Humidity = {.2f}%'.format(humidity))

The except block of code is executed when CTRL + C is pressed on the

keyboard. This is called the KeyboardInterrupt. When this block code is

executed the message Script end! displays in the terminal.

- 28 -

Now is the time to learn and make projects on your own. You can do that

with the help of many example scripts and other tutorials, which can be

found on the Internet.

If you are looking for the high quality products for Arduino and

Raspberry Pi, AZ-Delivery Vertriebs GmbH is the right company to get

them from. You will be provided with numerous application examples,

full installation guides, eBooks, libraries and assistance from our

technical experts.

https://az-delivery.de

Have Fun!

Impressum

https://az-delivery.de/pages/about-us

- 29 -

https://az-delivery.de/pages/about-us
https://az-delivery.de/

	Introduction
	Specifications
	The pinout
	How to set-up Arduino IDE
	How to set-up the Raspberry Pi and Python
	Connecting the module with microcontroller
	Library for Arduino IDE
	Sketch example

	Connecting the sensor with Raspberry Pi
	Enabling the I2C interface
	Python scripts

